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Abstract. Using a Karhunen-Loeve modal expansion of a stationary and gaussian optical 
field, an expression is derived for the joint probability of instants of occurrence of photon 
events. When the observation time is much longer than the coherence time, this expression 
takes a simple form. In this case, and for lorentzian light, it is shown that measurement of the 
total number of counts is sufficient to determine the maximum likelihood estimate (MLE) of the 
average count rate. A nonlinear equation is found whose solution gives the MLE of the 
bandwidth. 

1. Introduction 

The techniques of photon counting are gaining great importance in several fields among 
which are optical communications (see eg Karp et a1 1970), spectroscopy (see eg Jakeman 
1974) and image restoration (see eg Helstrom 1972 and Amoss and Davidson 1972). 
The most popular method of counting is to divide the available observation time 
interval [0, TI into subintervals and to find the number of counts in each. 

These numbers represent the observation on which the detection of light signals or 
the estimation of its parameters is based. However, it has been argued by Bar-David 
(1969) that this counting scheme does not, in principle, retrieve all the information 
contained in the observed photons. The reason is that there is more than one way of 
subdividing the observation time, and in order to retrieve the complete information, 
photons should be counted in all possible subdivisions of [0, TI. 

Another more direct, but less popular, approach is to measure the set of times at 
which photons occur. This set naturally contains all the information carried by the 
arriving photons in [0, TI, and estimates based on it should be superior, or equivalent, 
to those based on counting in a particular set of subintervals. The statistical detection 
and estimation based on this method have been studied by Bar-David (1969) who assumed 
the optical field to be coherent. More recent studies (Lutz 1970, Davidson and A m o s  
1973) have been concerned with estimations based on the arrival time of the mth photo- 
event. When m = 1, this is equivalent to the method of instants of occurrence which is 
the most accurate. Davidson and Amoss reached this logical conclusion by computing 
the estimated accuracy for different values of m. 

They also concluded that if this method is used to estimate the average count rate 
of gaussian thermal light it gives estimates that are more accurate than those calculated 
by the regular method of counting in subintervals. This comparison has also been done 
t Now at Max-Planck-Institut fur Biophysikalische Chemie, Gottingen, Germany. 
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by El-Sayyad (1972) on a more rigorous statistical basis. He finds that the best scheme 
depends on the loss function, the prior distribution, the cost of time and cost of sampling. 

Estimates based on time measurements cannot be correctly found without the 
knowledge of the joint probability distribution of instants of occurrence of photo- 
events. An expression for this probability has been found for coherent light (Bar- 
David 1969). Davidson and Amoss (1973) have found an expression for the probability 
density of the time of arrival of the mth photon for thermal light. However, they avoided 
the problem of finding the joint probability of several arrivals by waiting after each 
measurement for a time period longer than the light coherence time. This ensured that 
the measurements are independent but, of course, part of the available observation time 
is not utilized. The author of this paper has found a simple expression for the probability 
density of the arrival time in terms of the moment generating function of the intensity 
fluctuations of a general gaussian light (Saleh 1973). 

The object of the present paper is twofold. The first is to find a general expression for 
the joint probability of instants of occurrence of photon events for a general gaussian 
stationary and spectrally pure optical field. The second is to discuss the possibility of 
finding maximum likelihood estimators (MLE) based on such observations for the average 
light intensity and the bandwidth. 

A classical, instead of quantum mechanical, analysis is followed throughout this 
paper. Quantum mechanically, our joint probability can be written as a trace over the 
normally ordered field operators. With the common coherent-state representation of the 
field's density operator, the trace can be shown to be equivalent to the classical ensemble 
average of the analogous classical field variables. 

One limitation on the model we adopt is that we assume that it is possible to measure 
the instants of photon events accurately. This assumption is necessary to see the value 
of the model before attempts are made to account for such effects. 

2. The joint probability of times of occurrence of photon events 

An optical field represented by its analytic signal V(r, t )  is detected in the time interval 
[0, r ]  by a photodetector of area A. A total number of S photons is observed. They 
occur at times { t ,  , t z ,  . . . , ts}.  The conditional joint probability density of obtaining 
( 2 ,  , . . . , ts} given a realization of the optical field has the form (Bar-David 1969) 

where 

U(t )  = CI IV(r, t)I2 d2r s, 
and CI is the detector quantum efficiency divided by the energy in a quantum of light. 
For simplicitly, we define the field 

E(r,  t )  = ,/(a)V(r, t ) ,  

and thus have 

U ( ? )  = lE(r, t)l' d2r. s, 
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The field E(r, t) is assumed to be a stationary and spectrally pure complex circular 
gaussian stochastic process. The process U(?) is also stationary and has an expectation 
which equals the average counting rate f i .  

The joint density of obtaining { t l , .  . , , t s }  is obtained by averaging ( 1 )  over the 
realizations of U(?),  thus 

We are interested in finding an expression for this expectation. For this purpose we use 
a modal expansion (Helstrom 1970, Kelly 1972) for the process E(r, t) which is a temporal- 
spatial generalization of the Karhunen-Loeve expansion (see eg Van Trees 1968). 
Thus, 

where the coefficients apm are statistically independent complex random variables. The 
expansion functions fpm(r,  t )  are orthonormal over the interval [0, r ]  and the detector 
area A :  

This is possible if fpm(r,  t) are the eigenfunctions of the correlation function 

G(r,  t ;  P, f) = (E*(r ,  ?)E(?, f)), (6)  

If the field is spectrally pure, (6) can be written as 

G(r,  t ; P, f) = G(r,  F)x( t - f) exp iR( t - T) (8) 

where Q is the central frequency, and this permits us to break each eigenfunction 
fpm(r ,  t )  into spatial and temporal parts, 

fpm(r9 t )  = tp(r)Ym(?) ~ X P (  - iRt) (9) 

)*pm = hpgm (10) 

where y,(t) are the eigenfunctions of x ( t -  f), 

JOT X ( t  - ?)it,(?) dt = gmYm(f), 

which are orthonormal over [0, TI. Also, t , (r)  are the eigenfunctions of G(r,  P) 

G(r,  P)t,(r) d2r = hpSp(P), 

which are orthonormal over A.  The eigenvalues h, are scaled so that Ch, = 1 .  



Joint probability of instants of occurrence 1363 

Because the field is gaussian, the coefficients {a,,} are uncorrelated complex gaussian 
variables whose variances are the eigenvalues { , I p m )  of (7) (see eg Jakeman and Pike 
1968), ie 

By substituting (4) and (9) in (2) and using the orthonormality of tP(r) ,  we can write 

+ m n ( l )  = Y 3 l b n ( f ) *  (15) 

Also, by using (14) and the orthonormality of {y,(t)> we get 

Now we are in a position to find out the expectation in (3). 
For simplicity, we start with the special case S = 1. By substituting from (14) and 

(16) in (3) we obtain 

where 

Noting that {a,,} are independent and using (13), it follows that 

where 

and 

The function 

is known (Jakeman and Pike 1968) to be the moment generating function of the process 
U(?)  dt. Expressions for this function have already been found for most fields of 

practical importance (Jakeman and Pike 1969). With the substitution of (18) in (17), 
we get the desired probability density as a function of the eigenvalues and eigenfunctions 
of the mutual coherence function, 

f‘(t1) = Q(1) 1 A p m + m m ( t l ) .  
p , m  
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From (IO) it follows that 

where 

Since the field is stationary, this probability should be uniform over the interval [0, TI. 
The derivation of an expression for the joint probability in the general case is a 

straightforward generalization of the above derivation. This leads to the general 
equation 

p(ti 3 . . . I ts) = Q(1) 1 2 1 E m , E m ,  . . . E m ,  ( 1 $ m l n l ( f I ) $ m 2 n 2 ( ' 2 )  * * $m.n.('s)] (23) 
mi m2 m s  

where Z, is the summation over the permutations of (ml , m 2 ,  . . . , ms). As an example, 
we write (23) for S = 2, 

p( t13  t2) = Q(1) i ? m s n [ $ m m ( t l ) $ n n ( f 2 ) +  $ m n ( t l ) $ n m ( f ~ ) l  
m I I  

This probability should be a function of ( t z  - fl). Equation (23) is one of the main results 
of this paper. If the sets { g m ) ,  { h p } ,  { y m ( f ) )  and Q( 1) are known for a particular field, the 
joint probability of { t l  , t Z ,  . . . , fs}  can be directly obtained. In many practical situations, 
the area of the detector is much smaller than the coherence area of the field. In this case 
the optical field can be approximately treated as spatially coherent, which means it has 
only one spatial mode. In this case, we have one spatial eigenvalue hp = 1 and hence 

On the other hand, the observation time is usually longer than the coherence time and 
therefore we generally have a larger number of temporal modes. The eigenvalue problem 
(1 l), has been solved for several important distributions of x( t  - f). In such cases, results 
can be substituted in (23) and a lengthy expression for the desired joint probability will be 
obtained. But if the observation time covers a very large number of coherence times, the 
results of this section can be greatly simplified. 

3. Approximations based on long observation time 

If the observation time T is much longer than the field's coherence time tc, then the 
eigenvalues and eigenfunctions in (1 1) approximately take the simple forms (Van Trees 
1968) 
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where 
m 

X ( w )  = 5 x ( t )  exp( - iwt) dt 
- m  

is the power density spectrum. Also 
-I- e30 

where Y is any function of g,. In practical situations T/r, is large enough to justify the 
above approximation (Helstrom 1970). By applying (28) to (21) and using (26), we get 

P ( t l )  N Q ( l ) J m  ___- x(w) dw 2 - Q(l)q(O) 
-a: X(o)+ 1 2Tc 

which is independent of time as it should be. Applying (28) again to (24), we get 

In general, we apply (28) to (23) and with some algebraic manipulations obtain 

where 7c denotes permutations over (1,2, . . . , S ) .  
Equation (32), together with (31), is indeed a simple expression for the joint probability 

as a function of the field’s power density spectrum. It is obviously stationary and it 
satisfies the symmetries of a joint probability function. 

3.1. Lorentzian light 

A very important class of optical field is that which has a lorentzian spectrum. For such 
a field, x(t) = f i  exp( - rltl) and 

2 r  
X(w)  = n- 

aZ+rz’ 

from which 

Also, Q(1) has been shown to have the form (Jakeman and Pike 1968) 

where TT has been assumed very large. With the substitution of (38) and (34) in (32), 
we get an expression for the joint probability as a function of the instants of occurrence 
and the parameters ii and r describing the field. 
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Let us apply this to the special case of very weak light (ii/r << 1). In this case, 
~ ( 2 )  N H exp( - r r )  N ~ ( c )  and Q(l) N exp( - ET). By substituting this in (32) and using 
the expansion of intensity coherence functions of gaussian light (Reed 1962), we get 

P(tl, .  . . , ts )  N iis e-"g(tl,. . . , t s )  

where 
(35) 

is the normalized Sth order intensity coherence function. Equation (35) can be obtained 
directly from (3), simply by using the approximation T- '  Ji U(t)dt N H. Other results 
based on this approximation have also been obtained by Saleh (1974). 

4. Estimation of average count rate and bandwidth of gaussian-lorentzian light 

In this section, we deal with gaussian-lorentzian light observed in a time Tmuch longer 
than the coherence time rC. Hence the joint probability of photon instants is given by 
(32) together with (33) and (34). It depends on two parameters, the average count rate 
f i  and the bandwidth r. Given the observed times ( t l  , . . . , ts)  we are interested in finding 
the MLE for ii and r. These are the values of f i  and r which make the joint probability 
of the observations a maximum. 

For simplicity, we introduce two new positive variables 

p = +r7-[1+24 '">> 1, 

and 

E =  + 1+2- > 1 .  i T2 (37) 

Using (25), (26) and (27), we can write the joint probability as a function of p and E, thus 

There exists a one to one correspondence between the variables (ii, r) and (E, 8) deter- 
mined by the transformation (36) and (37). Hence we can use the invariance property of 
MLE (Kendall and Stuart 1973) and determine E and fi  which maximize (38), from which 
we obtain f i  and r. Let us define a likelihood function proportional to the logarithm of 
the joint probability 

To find the maximum of this function, we equate the first derivatives with respect to E 

and p to zero and get 

2S-(E-1)2 
E 2 - 1  ' 

p = E  
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and 

These two equations should be solved together for c and p. But let us first examine (40). 
By some algebraic manipulations, it can be shown that it is equivalent to 

(42) 
S(S-2) l l 2  - 1  2 s 1  s 1  fi  = --- T T (  I + -  :T)-l+{[T-T(l+A) ] -T-} . 

Equation (42) expresses a conclusion of some importance. The MLE for f i  and T are 
related by an equation in which the observation S appears but the times t , ,  . . . , ts  
do not. Moreover, if we use again our earlier assumption TT >> 1, on which (38) itself 
is based, we simply get 

- s  
T’ 

n N -  (43) 

Thus, the statistic S is sufficient for estimating fi. As far as the estimation of ii is concerned, 
the measurement of when exactly does each of the S photons occur does not contribute 
any useful information. The reader should be reminded that this holds good under the 
assumptions of gaussian-lorentzian field with TT >> 1. 

We turn now to the estimation of r. Equation (43) is equivalent to 

which when substituted in (41) gives 

which is a nonlinear equation in p. Equation (44) must have a solution. The reason is 
evident from examination of (38). The joint probability is a continuous positive function 
of /? which vanishes at  B = 0 and /3 = CO. Hence, at least one non-trivial value of fi  at 
which the derivative is zero must exist. 

5. Conclusions 

It has been made clear in the introduction that the MLE based on the instants of occur- 
rence of photoevents should have better accuracy than those obtained by the auto- 
correlation technique (based on equating the correlation function of the sample to 
that of the process, and known in statistics as the method of moments). The question of 
exactly how much gain in accuracy is obtained by this new technique is difficult to 
answer, because in order to test equation (44) and the accuracy of bandwidth estimates 
based on it, numerical values for ( t l  , . . . , ts)  must be given. Such values can be obtained 
either experimentally or by computer simulation of the process. A theoretical expression 
for the estimation accuracy is extremely difficult to obtain. 

Questions may be raised about the practicability of this technique, because of the 
extremely large number of photoevents involved in a typical spectroscopy experiment. 
Computations can always be made with a computer, although it may necessitate 
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a very lengthy computation time. This may be acceptable in certain situations. Also, 
there may be situations in which only a few photons arrive during the course of an 
experiment so that full use must be made of the arrival times, as suggested in this paper, if 
any information about the source is to be gained. 
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